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ABSTRACT

Some recent developments in the NWS river mechanics area are presented. They are
applicable to the NWS hydrology program for river and water resource forecasting services
as well as elsewhere. First, a level-pool routing algorithm which is very efficient for
computer applications is described. Also, the accuracy of reservoir level-pool routing is
defined by empirical nondimensional functions of reservoir length, depth, and volume as weil
as the shape and volume of the inflow hydrograph. Second, a noniinear Muskingum-Cunge
diffusion-type river routing algorithm is described. Also. its error properties are defined by
empirical functions of the channei slope and the hydrograph time of rise. Third, a theoretical
derivation is presented for the selection criteria for the maximum size of computational
distance and time step parameters for implicit dynamic routing models such as NWS
DAMBRK, DWOPER, and FLDWAV. Fourth, recent improvements in the NWS Simplified
Dam-Break (SMPDBK) model are described. Fifth, a physically based algorithm is derived
for computing threshold runoff values, which indicate the necessary runoff to produce
overbank flash flooding in small streams. The parameters in the threshold runoff algorithm
are evaluated from digital terrain databases in combination with a Geographical Information
System (GIS) and accompanying computer software.

1.0 Introduction

Simplifiec routing models have long been utilized in the National Weather Service
(NWS) hydrology program for river and water resource forecasting services. Also, more
sophisticated routing models based on the complete one-dimensional Saint-Venant equations
of unsteady flow have been developed and are being implemented, as resources are available,
for particularly complex routing applications such as dam-break floods, major river systems
subject to backwater effects, and tidal estuaries. This paper presents guidance for selecting
which routing applications should be considered for the Saint-Venant based dynamic routing
model and which are suitable for two particular simplified routing models, i.e., (1) a simple
level-pool reservoir routing model and (2) a simple diffusion-type river routing model known
as the Muskingum-Cunge method. Suitability of the simplified models is assessed on the
basis of the routing error as determined by the deviation of computed flows between the
simplified and Saint-Venant based models.
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A critical aspect of appiying Saint-Venant based models is the seiection of the
computational time steps (At) and distance steps (Ax). A theoretical derivation is presented
herein for the At and Ax selection criteria for impiicit dynamic routing models as used in the
NWS. These criteria are related to empirical criteria which have been used in the past.

The NWS Simpiified Dam-Break Model provides acceptable accuracy tor dam-break
flood prediction in cases where the river/valley downstream of the failed dam 1s
uncompiicated by levees. dams. lakes, estuaries, large tributaries and natural or man-made
constrictions which cause significant backwater effects. This paper reviews some recent
improvements in the model which corrects two modeling deficiencies for uncomplicated
downstream river/valley dam-break scenarios. These deficiencies are: (1) occasional non-
convergence of the iterative procedure for computing the peak discharge of the breached dam
when reduction of the discharge due to submergence effects of the downstream tailwater
depth is likely to occur, and (2) the lack of sutficient reduction in the flood wave celerity
associated with dam-break waves propagating through downstream valleys having significant
otff-channel (dead) storages.

Lastly, this paper presents the derivation of a physically based algorithm for computing
threshold runorf values used for flash flood guidance in the NWS. The threshold runotf
indicates the necessary runotf to produce overbank flash flooding in small streams. The
algorithm’s parameters are restricted to those that can be automatically obtained from a
Geographical Information System (GIS) along with terrain databases and minimal site
observations.

2.0 Level-Pool Reservoir Routing Algorithm and Error Properties

When flood waves are routed through reservoirs, the routing algorithm normally
chosen is a very simple one called "level-pool" routing. In this technique. the reservoir is
assumed to always have a horizontal water surface throughout its length and throughout the
time in which the flood wave moves through the reservoir. The water-surtace elevation (h)
changes with time (t), and the reservoir outflow (Q) is assumed to be a function of h(t) as
well as any movable gate settings.

Over the years, several level-pool routing techniques have been used, all of them based
on the principle of conservation of mass, i.e.,

Ity - Q(t) = dS/dt 2.1)

in which I(t) is the average inflow over the time interval (dt), Q(t) is the average outflow
(discharge) from the reservoir over the time interval, and dS is the change in storage during
the time interval. Initially, most level-pool routing techniques were graphical or
semigraphical; then with the advent of computers, they were computerized utilizing table
look-ups. However, since Eq. (2.1) is an ordinary differential equation, it can be solved
readily by various numerical techniques.



2.1 TIterative Trapezoidal Integration Algorithm

One very efficient numerical technique developed by Fread (1977) is an iterative
trapezoidal integration algorithm which integrates the conservation of mass Eq. (2.1). In this
algorithm, the time domain consists of time lines separated by At intervals, j.e., t=0, At,
2At, ..., jAt, (j+1)At. The time rate of change in storage is the product of reservoir
surface area (Sa) and change of water-surface elevation (h) over the j* time step, i.e.,

dS/dt = 0.5(Sa’ - Sa’*!y(hi*! - hi)/at) (2.2)

in which the surface area (Sa) is speciried as a known tabular function of h.

Using arithmetic averages for i(t) and Q(t) over the At interval and substituting
Eq.(2.2) into Eq.(2.1) yields the following:

0.5 « 'Yy - 0.5(Q’ - Q" - 0.5(Sa’ - Sal")(h'! - hi)/ati = g (2.3)

The inflow (I) at times j and j+1 are known from the specified inflow hydrograph, the
outflow (Q) at time j can be computed from the known water-surface elevation (), any
movable gate settings, and an appropriate spillway discharge equation or rating curve. The
surface area (Sa) can be determined from the known value of Y. The unknowns in the
equation consist of W'*!, Q*!, Sai*!; the latter two are known nonlinear functions of W+!,

Hence, Eq. (2.3) can be solved for hi*! by an iterative method such as Newton-Raphson,
Le.,

hilh = i - efh e (i) 2.4

in which k is the iteration counter; and f(_h,{") is the left-hand side of Eq. (2.3) evaluated

with the first estimate for hi™', which for k=1 is either b’ or a linear extrapolated estimate of

h*!  Also, f’ (h,’;") is the derivative of Eq. (2.3) with respect to W'*'; the derivative can be
approximated by using a numerical derivative as follows:

£/ (i) - [f(h,ﬂ'l - &) - flni - a)}/[(h.{'l - ) - " - s)] 2.5)

in which ¢ is a smalil value, say 0.1 ft (0.03 m). Using Eq. (2.4), only one or two iterations
are usually required to solve Eq. (2.3) for hi*!. Initially, the reservoir pool elevation (W)
must be known to start the computational process. Once h*! is obtained, Q*! can be
computed from the spillway discharge equation.



2.2  Error Properties of Level-Pool Routing

The assumption in the level-pool routing algorithm of a horizontal (level) water surface
along the length of the reservoir at all times can cause errors in the routed (computed)
discharges and water-surface elevations. The validity of this assumption depends on (1) the
routing time interval, At (which is usually 1/7 to 1/10 of the time of rise (T,) of the

hydrograph); (2) the speed of propagation (c’) of a flow disturbance, i.e.,

¢/ =V + ygbh (2.6)

in which V is the flow velocity, g is the gravity acceleration constant, and D is the hydraulic
depth of flow; and (3) the length of the reservoir (L;). In order for the water surface to
remain essentially level during each time step, the flow disturbance caused by the incoming
flow at the upstream end of the reservoir must propagate through the entire length of the
reservoir during the At time interval. When this does not occur, the water surface is not
horizontal or level but rather has a sloping surtace along the length of the reservoir.

In order to assess the magnitude of the error in the computed discharges via the level-
pool routing algorithm when the water surface is not level, a number of reservoir routing
applications having a range of reservoir properties (length, depth, volume) and a range ot
incoming discharge hydrographs were simulated with the level-pool reservoir routing
algorithm as well as with a highly accurate implicit dynamic routing algorithm. The dynamic
routing algorithm (Fread, 1974, 1977, 1978, 1985, 1988, 1992) is based on the complete
one-dimensional (Saint-Venant) equations of unsteady flow; it accounts for sloping water
surfaces as well as inertial effects ignored in the level-pool algorithm. The level-pool
algorithm’s outflow discharges were compared with those simulated by the dynamic routing
algorithm. The difference between the two was considered to be the magnitude of the error
associated with the level-pool algorithm when the reservoir routing application violated the
basic assumption uf a horizontal (level) water surface at all times during the routing.

The level-pool routing error (g,), associated with the rising limb of the outflow
hydrograph, is normalized by expressing it as a percent of the peak outflow discharge, i.e.,

i=l

12
e, = 100 l:NE (QLi - QDi)Z/N/} /Qop 2.7

in which QLi is the level-pool routed flow; QDi is the dynamic routed flow, QDP is the

dynamic routed flow peak, and N’ is the number of computed discharges comprising the
rising limb of the routed hydrograph.

The normalized level-pool routing error (e,) is shown plotted in Fig. 1 as a function of
three dimensionless parameters of time, length, and volume, i.e., a, o, and o, respectively.
They are defined as follows:
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o =u L /(3600 T, gD, ) (2.8)
g, = D./(n L)
o, = hydrograph volume/reservoir volume (2.10)

in which g is a units conversion factor having a value of 5280 (US) or 1000 (SI), g is the
gravity acceleration constant, L, is the reservoir length in miles (US) or km (SI), D, is the

average depth of the reservoir in ft (US) or m (SI), and T, is time of rise of the hydrograph
in hours.

An inspection of Fig. | reveals the following:

(1) e, increases as o, increases: therefore, from Eq. (2.8), e, increases as L. increases.
as T, decreases. and as D, decreases;

(2) e, increases as o, decreases; therefore, from Eq. (2.9), e, increases as L,
increases, and as D, decreases; and

(3) e, increases as o, decreases; therefore, from Eg. (2.10), e, increases as the
hydrograph volume decreases and as the reservoir volume increases.

Fig. 1 can be used to obtain an estimate of the error incurred in level-pool routing if

= 150 miles, D, = 300 ft, T, = 6 hrs, and o, = 0.1. Using Egs. (2.8) and (2.9), ¢, and
o, are computed as follows:

L
- i L, : 5280 150 037

3600 T, Jg D 3600 6 y32.2 (300)

D, _ 300

= = = 0.0004
* wL, 5280 (150)

Then, with ¢, = 0.37, ¢, = 0.0004, and o, = 0.1, Fig. 1 can be interpolated to give a value
of 18 percent for the routing error (e;). However, if for the same reservoir, the hydrograph
has much different properties such as T, = 48 hrs and ¢, = 0.8, then recomputing o, i.e.,

L,
| u 5280 150 - 0.05

3600 T. g D, 3600 48 32.2 (300)

and entering Fig. 1 with ¢, = 0.05, ¢, = 0.0004, and o, = 0.8, a value of 5 percent for &,
is obtained. This illustrates the sensitivity of e, to the properties of the hydrograph.




From Fig. 1, if the routing error (e,) 1s restricted to less than 10 percent, then g <

0.2, and o, > 0.0004. Using these values in Egs. (2.8) and (2.9), the following semi-
empirical equation can be derived for the minimum allowable time of rise (T, min) necessary
to restrict level-pool routing errors e, < 10 percent:

T, =ab - L /D, (2.11)

where:

b = a/d] | (2.12)

and a = 0.26 (US) or 0.09 (SI); L, has units of ft (US) or km (SI); D, has units of ft (US) or
m (SI); and « = 0.28, 8 = 0.21 if 0, < 0.0004 or o = 0.088, 8 = 0.66 if ag, > 0.0004.

[f Eq. (2.11) is appiied to a range of values for L, and D,, the minimum ailowable
values for T,, which restrict e, errors to less than 10 percent, are given in Table |.

Table 1. Minimum Allowable T, Values Computed from Eq. (2.11) for a Range
of L, and D, Values such that €, < 10%

L, D, T L, D, T
(mi) (ft) (D) (mi) () by
5 10 2.3 50 100 7.2
5 20 1.0 50 200 3.3
5 50 0.4 50 300 1.9
10 20 3.2 100 100 16.2
10 40 1.5 100 200 10.1
10 100 0.5 100 300 7.1
25 50 5.1 200 100 34.4
25 100 2.3 200 200 22.9
25 250 0.8 200 300 17.5

An inspection of Table | shows that, in general, level-pool routing errors exceeding 10
percent are associated with most reservoirs subjected to very rapidly rising hydrographs such




as dam-break floods or turbine releases, i.e., 0.1 < T, < 1.0. Also, for very long
reservoirs (L. > 50) flash floods or small tributary tloods with 6 < T, < 18 will be subject
to level-pool routing errors exceeding 10 percent. Finally, as D, becomes increasingly
smaller and L, larger, level-pool routing for such "run-of-the-river" reservoirs 1s not

applicable because the T, values exceed those of the routed hydrographs.

3.0 Muskingum-Cunge Diffusion Routing Algorithm and Error Properties

The well-known and much used Muskingum routing method was modified by Cunge
(1969) so as to significantly increase its range of application from that of a kinematic wave-
based routing method to one based on the diffusion analogy. This modified Muskingum
method, known as the Muskingum-Cunge method, is most effectively used as a distributed
flow routing technique.

3.1 Muskingum-Cunge Diffusion Routing Algorithm.

The Muskingum-Cunge recursive equation applicable to each Ax; subreach for each At
time step is:

o= CQT - CQ + CQL ¢ G (3.1)
where:
C, = (At} - 2KX)/C, (3.2)
C, = (At = 2KX)/C, (3.3)
C, = [2K(1-X) - At)/C, (3.4
C, = q, AX, AtV/C, (3.5)
in which:
C, = 2K(1-X) + At! (3.6)
K = Ax/c (3.7
X =0.5[1 - Q/C B S, ax)] (3.8)
8



The coetficients C,, C,, and C, are positive values whose sum must equal unity. The C,
coefficient accounts for the etfect of lateral flow (q,). K is a storage constant having the

dimension of time, and X is a weighting factor expressing the relative importance of inflow
and outtlow on the storage in the Ax; subreach. The bar (-) above the variable indicates the
variable is averaged over the Ax; subreach and over the At time step. In Egs. (3.1) - (3.9),

Q is discharge, S, is the energy slope, B is the cross-sectional wetted topwidth. < is the
kinematic wave celerity, i.e.,

¢ = (5/3 - 2/3 A/B? dB/dy) Q/A (3.9)

in which dB/dy is the rate of change of the topwidth (B) with respect to the flow depth (y),
and A is the cross-sectional wetted area.

It can be shown that Eq. (3.1) is a finite-difference approximation of the classical
kinematic wave equation. i.e..

dQ/at - ¢ 9Q/dx - cq =0 (3.10)
However, Cunge (1969) demonstrated that if X is expressed as a particular function of

the flow properties, i.e., Eq. (3.8), and if the storage constant (K) is expressed as in Eq.

(3.7), then Eq. (3.1) is a finite-difference representation of the following parabolic diffusion
analogy equation:

3Q/at + ¢ 8Q/3x - cq - D, 3°Q/3x* = 0 3.11)

in which D¢ = (1-F¥/4)Q/(2 B S,) is a diffusion coefficient and F = Q/(\/ g/B A”’) is the
Froude number. Eq. (3.11) can account for wave attenuation. The kinematic wave Eq.
(3.10) does not allow for the physicz' phenomenon of wave attenuation except through
numerical errors introduced by the Ax and At computational steps.

For minimal numerical errors introduced in solving Eq. (3.1), the time step (At) and
distance step (Ax;) should be selected according to Jones (1981) as follows:

At < T/M (3.12)
where M > 5, T, is the time of rise of the hydrograph, and

12

Ax = 0.5 ¢ At[l {1+ L5 QB ¢ s, av) ] (3.13)

in which S, is the channel bottom slope.



Solution technique. With coefficients defined by Egs. (3.2) - (3.8), At and Ax selected
according to Egs. (3.12) and (3.13) respectively, the Muskingum-Cunge recursive diffusion
routing equation can be solved by either linear or nonlinear (iterative) methods.

In the linear method. the space and time averaged variables (6, }S, K) are computed
from the known values (Qij, ij.l, Qij'l) within the Ax, subreach, i.e.,

Q=(Q -Qh ~ QN3 (3.14)

Eq. (3.14) is not a very good average since it neglects the unknown value of ( Q/r). This
causes unwanted and significant errors in the solution of Eq. (3.1).

In the nonlinear method, the space and time averaged variables (Q, B, A) include the
unknown value Q’;! which requires an iterative procedure since Q/; must be first estimated

as Q[’ll from a previous time or iteration step, 1.e.,
P j+1 A jel
Q=(Q -Qu-Q" -Q.H4 (3.15)

. 0 A _
Iteration ceases when |Q))} - Q.|| < e, where e is a small acceptable tolerance value.

Computation of water-surface elevations. The water-surface elevation (h)
corresponding to each discharge must also be computed since B and A in Egs. (3.8) and
(3.9) are known functions of h; also, the determination of the water-surface elevation is
usually an important result, in addition to discharge, that is desired from the flood routing
computations. The water-surface elevations may be obtained using a steady, uniform flow
formula such as the Manning equation, i.e.,

Q = “/’/n AR2/3 SCI/Z (3.16)

in which n is the Manning roughness coefficient, A is the cross-sectional area, R is the
hydraulic radius given by A/P in which P is the wetted perimeter of the cross section, S, is
the energy slope computed via a backwater equation for only the initial flow to properly
approximate S, for channels with irregular and even adverse bottom slopes, and ' is a units
conversion factor (1.49 for US and 1.0 for SI). Eq. (3.16) is solved for the depth by
iterative numerical techniques such as Newton-Raphson method and, if nonconvergence
occurs, followed by the less efficient bi-section method.

3.2 Error Properties of Muskingum-Cunge Routing
In order to assess the magnitude of errors associated with the nonlinear Muskingum-Cunge

routing algorithm with water-surface elevations computed from the normal depth Manning
Eq. (3.16), a number of routing applications having a range of hydrographs and channel

10



bottom slopes were simulated with the Muskingum-Cunge method as well as with a highly
accurate implicit dynamic routing algorithm (Fread, 1988, 1992). The Muskingum-Cunge
algorithm’s peak discharges and corresponding water-surface elevations were compared with
those computed by the dynamic routing algorithm. The difference between the two was
considered to be the magnitude of the error associated with the Muskingum-Cunge algorithm.
The Muskingum-Cunge peak routing error () expressed in percent is:

€ =(h+ed” (3.17)
where: € = 100Qy, - Q )/ Q. (3.18)
6 = 100 (h, - hy )y (3.19)

in which Q,, and h,, are the peak discharge and water-surface elevation computed by the
P P

Muskingum-Cunge algorithm, while QDp and th are the peak discharge and water-surface
clevations computed by the dynamic routing algorithm.

Previously, Fread (1983, 1985) derived the following theoretical error expression for
general diffusion routing algorithms:

Tr o= #// d)/ qpo.4/(‘€' n%s SO.?) (320)

in which " is a units conversion factor, 0.0022 (US) or 0.0091 (SI), ¢’ is a channel shape
factor (0.55 for natural channels with flood plains, 0.6 for rectangular-, 0.54 for parabolic-,

and 0.50 for triangular-shaped channels), g, is the peak discharge per unit width of channel,

S is the channel bottom slope, ft/ft, and Trm.-n is the minimum time of rise of the routed

hydrograph compatible with the routing error, €. A sensitivity analysis of Eq. (3.20)

indicates the terms (¢’, q¢>*, n®®) have maximum influence on T _ by factors representin
qp uia DY P g

the ratio of the maximum/minimum values of each term, i.e., 1.2, 2.0, 2.5, respectively;
however, S°7 has an influence ratio of at least 40. Therefore, the only parameter that can
greatly affect the minimum allowable time of rise (T, . ) for an allowable error (¢) is S.

Thus the following expression can be used to approximate Eq. (3.20):

Tm = u/S" (3.21)

T,
in which u and v are fitting parameters.
The resuits of this empirical error analysis via comparative routings through 10-, 20-,

50-, and 100-mile channel reachs are shown in Fig. 2. The curves representing a constant
value of € are plotted against the dominant hydrograph property, T, (the time of rise in hrs)

11
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along the vertical axis, and S, (the average channel bottom slope, in ft/ft) along the
horizontal axis. The Muskingum-Cunge algorithm is shown for 5 percent and 20 percent ¢
curves, i.e., curve #1 (for routing reaches of 10, 20, 50, and 100 miles) and curve #2 (for
the 20-mile routing reach only), respectively. In general these curves show that as S
increases, there is a gradual nonlinear decrease in the minimum T, values that can be
accommodated by the algorithm for a given ¢ value. The 5 percent curves are located above

the 20 percent curve; this denotes that the minimum T, values increase as the error ¢
decreases. In generai, Fig. 2 indicates that the Muskingum-Cunge algorithm is not
applicable for rapidly rising hydrographs such as dam-break floods or turbine releases (say T,
< 4) for flat channels (say S < 0.001 ft/ft or approximately 5 ft/mile). The minimum
allowable T, gradually decreases to about 0.3 hr as the slope increases to 0.01 (53 ft/mi).
The darker shaded area represents all conditions of S and T, that cause the error ¢ to exceed

20 percent while the unshaded area represents all S and T, values that produce € values less
than 5 percent. The lighter shaded area represents the conditions of S and T, that cause the
routing error to be within the range 5% < ¢ < 20%. The 5 percent ¢ curve #1 for the

routing reach (L = 20 mi) can be represented by an expression similar in form to Eq. (3.21)
for the minimum allowable T,, i.e.,

T, = 0.0026/S'® (3.22)

Also, the 20 percent € curve #2 for the routing reach (L = 20 mi) can be expressed in a
similar manner, i.e.,

T, = 0.0031/S°% 3.23)

"min

The routing reach length (L) affects the routing error as shown by the four dashed curves

for ¢ = 5% for reach lengths of 10, 20, 50, and 100 miles. The error increases with L
bul in a nonlinear manner in which the increase dampens as the slope(S) increases.

In general, those routing applications involving a gently sloping channel and rapidly
rising floodwave such as dam-break floods or turbine releases, when the combination of S, and
T, becomes small enough that Eq. (3.22) cannot be satisfied, dynamic routing models are
required. Also, dynamic routing models are required for (a) situations where backwater
effects are important due to tides, significant tributary inflows, natural constrictions, dams,
and/or bridges; and (b) situations where waves propagate upstream from large tides and storm
surges or very large tributary inflows. As the trend for increased computer computa-tional
speed and storage capabilities at decreased costs continues, the economic feasibility of using
dynamic routing models for a wider range of applications will continue to increase, since
dynamic models have the capability to correctly simulate the widest spectrum of wave types
and waterway characteristics. Implicit dynamic routing models -- the most efficient and
versatile although the most complex of the dynamic routing models -- will be increasingly
utilized as improvements continue to be made in their computational robustness and reliability.
Actually, the required computer time for the NWS implicit dynamic routing model
(DAMBRK ) is only about twice that required for the Muskingum-Cunge routing algorithm.
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4.0 Selection of Ax and At Parameters for Implicit Dynamic Routing Models

Four-point implicit finite-difference approximation equations of the complete Saint-
Venant unsteady flow equations constitute the most extensively used basis of implicit
dynamic routing models such as the NWS DAMBRK (Dam-Break), DWOPER (Dynamic
Wave Operational) and FLDWAYV (Elood Wave) river/reservoir routing models (Fread,
1974, 1977, 1978, 1985, 1988, 1992; Fread and Lewis, 1988). It is most important that
appropriate computational distance (Ax) and time step (At) parameters be used in the
application of these routing models. If the selected values are too small, the computations
are inefficient, sometimes to the extent of making the application too expensive or time
consuming and therefore infeasible; however, if the values are too large, the resulting
truncation error (the difference between the true solution of the partial differential Saint-
Venant equations and the approximate solution of the four-point implicit finite-difference
approximations of the Saint-Venant equations) may be so large that the computed solution of
discharge and corresponding water-surface elevation is totally unrealistic. Unrealistic
solutions can cause the computer program to abort when computed elevations resuit in
negative depths; also, unrealistic solutions can result in significant irregularities in the
computed hydrograph as manifested by spurious spikes in the rising and/or falling limbs of
the hydrograph.

After several years of experience with the selection of Ax and At values for the NWS
implicit dynamic routing models in numerous applications, the following empirical selection
formulae were developed:

At = TJ/20 4.1)
and,
Ax < ¢ TJ/20 ) 4.2)

where T, is the hydrograph’s time of rise (time from the significant beginning of increased
discharge to the peak of the discharge hydrograph), in hours; and c is the bulk wave speed
(the celerity associated with an essential characteristic of the unsteady flow such as the peak
or center of gravity of the hydrograph), in miles/hour; At is the computational time step size,
in hours; and Ax is the computational distance step size, in miles. In most applications, the
bulk wave speed is well approximated as a kinematic wave celerity; it can also be
approximated from two or more observed flow hydrographs at different points along the
waterway. Since c can vary along the waterway (channel, river, reservoir, estuary), Ax may

not be constant along the waterway. The kinematic wave celerity can be approximated for
rivers as follows:

c=%k'V 4.3)

in which k’ is the kinematic wave ratio having values ranging from 4/3 < k/ < 5/3
(k’ = 3/2 for most natural channels), and V is the flow velocity.
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Recently, a theoretical derivation of selection criteria for Ax and At computational
parameters was achieved. The new criteria not only explain the utility of the previous
empirical formulae in generally producing acceptable computational resuits, but are also
capable of yielding appropriate Ax and At values for routing applications significantly
differing from past experience. A derivation of the new Ax and At selection criteria follows.

Theoretical wave damping (attenuation) and celerity (velocity) error diagrams were
obtained previously by Fread (1974) using a Fourier technique similar to that used by
Leendertse (1967) on the linearized Saint-Venant equations. The error diagrams consisted of
convergence ratios (the ratio of the implicit finite-difference solution of the linearized
equations to their analytical solution) for wave damping and celerity which were plotted
against D, (the wave discretization number) for a range of D, (Courant number) values and
dimensionless friction (D,) values. Recently, it was observed that a relationship between D,

and D could be established for error (e) values in the range of 0 to 5 percent. This
relationship was of the form:

Dy > 7 D¢ (4.4)
where 7 is approximately 12 fore = 2 percent, and n = 7 fore = 5 percent.
The wave discretization number (D,) is defined as:
D, = L,/Ax (4.5)
where L, is the wave length and Ax is the computational distance step. However,
L,=cT=c3T, (4.6)

where c is the kinematic wave celerity, T is the wave period of the unsteady disturbance
(wave), and T, is the time of iise of the wave or hydrograph. Substituting Eq. (4.6) into Eq.
(4.5) yields:

D, = 3 ¢ T/Ax 4.7)

The Courant number (D) is defined as:
D. = ¢/ At/Ax (4.8)

where the dynamic wave celerity (c’) is:

¢/ =V + vgD (4.9)
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in which V is flow velocity, g is the gravity acceleration constant, and D is the hydraulic
depth of flow.

4.1 Ax Selection Criteria
Substituting Eq. (4.7) into Eq. (4.4) yields:
3¢T,/Ax > n D¢ (4.10)
which can be rearranged to give:

¢ T,

AX £ ———
n Dq/3

(4.11)

If n 1s repiaced with the conservative value of 12, i.e., a 2 percent level or truncation error is
tolerated, and if D > 3, then

Ax < ¢ T/20 (4.12)
which is identical with the empirical formula for Ax selection, i.e, Eq. (4.2).

The Ax selection criterion, Eq. (4.12), is based on the linearized form of the Saint-
Venant equations; however, the complete Saint-Venant equations used in the NWS implicit
routing models are nonlinear. The nonlinear terms can interact with highly nonlinear data
(severe expansion/contraction in cross-sectional area or significant changes in bottom slope
along the waterway) so as to require even smaller Ax computational distance steps than
specified by Eq. (4.12).

Thus, another criterion for the selection of Ax is the restriction imposed by rapidly
varying cross-sectional changes along the waterway. Samuels (1985) found that, for severely
contracting/expanding cross sections, the four-point implicit finite-difference solution
theoretically requires the following criterion be satisfied within any Ax computational
distance step:

0.635 < A,/ A; < 1.576 (4.13)
in which A; and A,,, are the wetted cross-sectional areas at adjacent locations, i and i+1,
along the waterway. Basco (1987) found from numerical experimental studies using NWS
DAMBRK the following similar criterion:

0.70 < A, /A, < 2.0 4.14)

Fread (1988) developed the following algorithm to ensure that the selected computational
distance step satisfied the criterion of Eq. (4.13):
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Ax = AX/N” (4.15

where:

N7 =1+2]|A -A, /A (4.16)
in which AX; is the preliminary distance step, A=A,,, if A, > A,,, (contracting reach) or

A=A, if A; < Ay, (expanding reach), and N” is rounded to the nearest smaller integer
value.

Also, significant changes in the bottom slope of the waterway can require smail
computational distance steps in the vicinity of the change. This is required particularly when

the flow changes from subcritical flow (V/ygD < 1) to supercritical flow (V/ygD > 1)
or conversely along the waterway. Such changes can require Ax computational distance
steps as small as:

AX,, < Ax < AxXg, 4.17)
in which Ax,, = 0.01 miles (16m) and Ax,, = 0.038 miles (61m).

The appropriate Ax selection would be that given by Eq. (4.12) unless in Eq. (4.16)

when N” > 1, a smaller Ax would resuit from Eq. (4.15), or if Eq. (4.17) were applicable
which could require smaller Ax than either Eq. (4.12) or Eq. (4.15).

4.2 At Selection Criterion

In order to find an expression for the selection of At, Eq. (4.7) and Eq. (4.8) are
substituted into Eq. (4.4). This gives:

3¢T,/ Ax > n ¢’ At/Ax (4.18)
which can be rearranged to give:

At < T/M (4.19)
where:

M=1nc'/(3¢) (4.20)

Replacing 7 with the conservative value of 12 which allows a 2 percent level of truncation
error, and substituting Eq. (4.3) and Eq. (4.9) into Eq. (4.20) yields:

M = 4 (V +/gD)/(1.5V) (4.21)
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Now, the Manning equation is used for V, i.e.,
V =/ D* S "n (4.22)

in which u’ is 1.49 (US units) and 1.0 (SI units), D is the hydraulic depth of flow in the
river, S, is the bottom slope (dimensionless), and n is the Manning roughness coefficient.
And substituting Eq. (4.22) into Eq. (4.21) gives:

M = 2.67[1 + @n/(D™ S, (4.23)

in which % is 3.78 (US units) and 3.13 (SI units). Using typical values for S,, n, and D as
shown in Table 2, Eq. (4.23) provides a range of M values of 8 < M < 33. For other

Table 2. M values computed from Eg. (4.23)
for a range of S,, n, and D values
S, (ft/mile) S, (ft/ft) n D (ft) M |
100 0.01894 0.070 5 7
25 0.00473 0.040 10 7
5 0.00095 0.035 20 10
1 0.00019 0.030 20 16
0.5 0.000095 0.015 30 12
0.5 | 0.900095 0.035 10 28

practical values of S, n, and D, the range for M could be somewhat greater but generally
not exceeding 6 < M < 30. Thus, Eq. (4.19) with an M value of 20 is the same as Eq.
(4.1). Egs. (4.19) and (4.23) indicate that At should be more variable than allowed in Eq.
(4.1) due to the influence of the channel hydraulic properties (S,, n, and D), with the latter
property a function of the channel cross-sectional shape and size. Also, it is recommended
that Eq. (4.23) be used for M in Eq. (3.12) to select At for the Muskingum-Cunge diffusion
routing algorithm.

5.0 Recent Improvements in the NWS SMPDBK Model

The NWS Simplified Dam-Break (SMPDBK) Flood Forecasting Model was first
developed in the early 1980’s and released in 1984 (Wetmore and Fread, 1984). It was
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considerably enhanced and released again in 1988. Recently, it was further improved and
released in late 1991 (Fread, et al., 1991).

5.1 Peak Flow Computation

The SMPDBK model consists of a peak discharge (Q,) equation which considers the
time-dependent breach of a dam and the possible submergence effects (reduction in the peak
outtlow) due to the downstream water-surface elevation, i.e.,

Q - K, {Qo + 3.1 B, (C/(t/60 + CI/E ))3] 5.1)

where: C = 23.4 Sa/B, (5.2)
K =10 if h, < 0.67 (5.3)

K, = 1.0-27.8 (h, - 0.67) ifh, > 0.67 (5.4)

h, = (h, - hy)/h,, (5.5)

h, = [C/(t/60 + CHED)| 5.6)

in which K is the submergence correction factor, Q, (ft¥/sec) is the spillway and overtopping
flow, B, is the average breach width (ft), t; is the duration of time (minutes) in which the
breach linearly forms completely, Sa is the reservoir surface area (acres), h, is the water-
surface elevation (ft) in the tailwater section during peak flow, h, is the final elevation (ft) of
the breach bottom, and H is the reservoir water-surface elevation at initiation of breaching
minus h,.

The water-surface elevation (h,) of the tailwater section just downstream of the dam is
obtained from an iterative solution of the Manning Eq. (3.16), in which the energy slope (S,)
1s computed as follows:

S, =S, = Ah/At[l/c + VB(L - V/c)/gA] - 1/g AV/At 5.7

e

in which V. = Q,/A, and c is the kinematic wave speed defined by Eq. (3.9).

The iterative solution utilizes the Newton-Raphson method which is very efficient;
however, occasionally it does not converge. When convergence is not attained in 15
iterations, the more reliable but less efficient bi-section method is used. Since h and S are
interdependent, h is always solved twice. First, Eq. (3.16) is solved for h, using S, for S..
Then using this value for h, in Eq. (5.7), S, is computed and Eq. (3. 16) is once again solved
for h,.
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The use of Eq. (5.7), rather than assuming S, = S,, is among the improvements of the
most recent release of SMPDBK. Another recent enhancement involves the procedure to
obtain a first estimate for K,. In some applications, the submergence correction factor that
was obtained in previous versions was not correct, particularly if there was considerable
submergence effects. The new enhancement always requires the associated tailwater (h,) to
be below the reservoir water-surface elevation. It is adjusted iteratively until the peak
discharge does not change as the tailwater h, is recomputed.

In three particular applications, the use of Eq. (5.7), along with the improved iteration
scheme for K,, reduced the error associated with the peak discharge (Q,) by an average of 92
percent. The average residual error (as determined by comparing with the NWS DAMBRK
model) was approximately 3 percent. In two of the applications, the former method
computed K, values of 0.79 and 0.46 when in fact they both should have been 1.0; these
were obtained using the recent enhancements. In the other application, the old K, value of
0.26 was found by the new method to be 0.79. In each of these applications, a larger and
more accurate peak discharge was predicted by the recent enhancements to the SMPDBK
model.

5.2 Peak Flow Routing and Water-Surface Elevation Computation

In the SMPDBK model, the peak discharge computed from Eq. (5.1) is routed (the
peak is attenuated) to other points of interest downstream of the dam using dimensioniess
peak flow routing curves. These curves were developed from numerous executions of the
implicit dynamic routing model, NWS DAMBRK (Fread, 1977, 1988, 1992). The curves
are grouped as three families associated with specific peak flow Froude (F) numbers (0.25,
0.50, 0.75). The curves within a family are denoted by five dimensionless volume parameter
(reservoir volume/wetted volume of downstream valley from dam to point of interest) values.
Each curve shows the relationship of the dimensionless discharge ratio (routed peak/Q,) to
the dimensionless distance ratio (distance from dam to point of interest/X.) in which X_ is a
characteristic distance which is a function of the reservoir volume. The Manning Eq. (3.16),
along with Eq. (5.7), is iteratively solved for the water-surface elevation (h) corresponding to
the routed peak discharge.

5.3 Time of Travel Computation

The time of travel (TT,) for the dam-break wave to propagate from the dam to the i*
point of interest (x; miles) downstream is computed as follows:

TT; = tJ60 + (u/3600) x/c, (5.9

in which the wave speed (c)) is computed the same as the kinematic wave speed defined by
Eq. (3.9), and u is a units conversion factor defined in Eq. (2.8) and Eq. (2.9).

In 1988, SMPDBK was improved to allow floodplains to have dead (off-channel)
sections in addition to the active section. The total area (active + dead) was used to
compute routed peak flows while the corresponding water-surface elevations were computed
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using the Manning Eq. (3.16) with the cross-sectional area (A) consisting only of the active
portion. It was noticed that in applications in which the downstream valley floodplain
contained significant portions of dead (off-channel) storage, the flood wave celerity computed
by Eq. (3.9) was too large although the routed peak discharge and corresponding water-
surface elevations were in close agreement with those computed by the NWS DAMBRK
model. In two particular applications, the averaged celerity error was 44 percent.

In the recent improvements to SMPDBK, the wave celerity used in Eq. (5.8) was
computed as in Eq. (3.9); however the cross-sectional area (A) used in Eq. (3.9) is taken as
the total cross-sectional area (active + dead). This resulted in a reduction in the celerity
error of 63 percent in one application and 18 percent in another. The residual error in each
were 39 percent and 15 percent, respectively.

6.0 Threshold Runoff for Areal Flash Flood Guidance

Part of the mission of the NWS River Forecast Centers (RFCs) is the preparation and
distribution of flash flood guidance products. These products contain the rainfall amounts
required to produce flooding,and are used by the Weather Forecast Offices (WFOs) as the
criteria for issuing flash flood watches and warnings.

The principal flash flood guidance product is areal flash flood guidance. This is the
average rain needed over an area during a specified time period (1-, 3-, 6-hour) to initiate
flooding on small streams. Flooding is assumed to occur when the streamflow slightly
exceeds bank-full capacity. Most of the small streams are ungaged. Currently, areal flash
flood guidance is issued for zones, counties, and/or urban areas.

With the modernization of NWS during the 1990’s, areal flash flood guidance will be
issued on a gridded basis to be compatible with the fine resolution gridded precipitation
estimates provided by the Weather Surveillance Radars (WSR-88D) installed throughout the
United States under the Next Generation Weather Radar (NEXRAD) portion of the NWS
modernization program. The modernized gridded areal flash flood guidance as described by
Sweeney (1991) will be more accurate and consistent. Unlike the current areal guidance-
which is produced by hydrologic algorithms that vary considerably among the 13 RFCs, the
modernized gridded areal flash flood guidance will be based on a uniform and objective
methodology.

Two parameters are required to compute areal flash flood guidance. One is the
threshold runoff value, i.e., the amount of runoff to cause slightly greater than bank-full flow
in the small streams. The second is the current soil moisture conditions which affect the
proportion of precipitation becoming runoff which enters the streams. Only the first
component is addressed in detail in this paper.
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6.1 Threshold Runoff Computation

The amount of runoff needed over an area to initiate flooding (streamtlow slightly in
excess of bank-full capacity) is the threshold runoff. Threshold runoff depends on several
characteristics of the watershed and the stream channels. The size of the watershed (area)
determines the total volume of water that appears downstream at a point of interest. The
slope of the channel and roughness of the steambed controls the velocity of the water as it
moves downstream. The following is a derivation for the threshold runoff algorithm as
described by Sweeney (1991).

Snyder (1938) developed a method for determining excess runoff peak flow for
ungaged basins. The method is based on the unit hydrograph principle, i.e., peak discharge

(q,) per unit of drainage area in acres (As) is a simple inverse function of the basin lag (t,).
Thus.

q, = 640 C/1, (6.1)

where q, is in ft¥/sec/acres, t, is in hours, and C, is a parameter (ranging from about 0.4 to
0.8) obtained from a similar watershed that is gaged.

The basin lag was found by Snyder to be a function of basin size, shape, and slope,
L.e.,

t, = C, LL//S) (6.2)

where t, is the basin lag in hours, defined as the time from the centroid of rainfall to the
peak of the unit hydrograph; C, is the coefficient to be derived from similar watersheds that
are gaged in the same region (generally varies from 0.35 for valley areas, 0.72 for foothill
areas, to 1.2 to mountainous areas); L is the main stream length in miles from outiet to the
upstream basin boundary; L. is the main stream length in miles from the outlet or point of
interest to a point on the stream nearest the watershed centroid; S is the weighted channel
slope in feet per mile; and b is a constant assumed to be 0.38 (Linsley, et al., 1986).

If q,g is the unit hydrograph peak discharge per unit area corresponding to unit volume of
runoff (excess rainfall) of duration tg, the peak discharge (Q,) at the watershed outlet or point
of interest corresponding to a volume R of runoff of duration tg is:

Q, = q,RA, (6.3)
where A, is the area in square miles of the watershed upstream of the outlet or the point of

interest; R is the runoff amount in inches; and Q, is the peak discharge in ft}/sec at the point
of interest.

Q, at bank-full flow can be related to channel geometrical and roughness characteristics
using the Manning Eq. (3.16). It is convenient to consider the effect of channel shape by
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representing the channel topwidth (B) as a power function of depth (y) with Yy denoting the
bank-full depth and B, the bank-full width, i.e.,

B, = kvy, ' (6.4)
in which k is a scale factor and m is a shape factor (0.25 for natural channels with
floodplains, and O for rectangular-, 0.5 for parabolic-, and 1 for triangular-shaped channels).

Integration of Eq. (6.4) with respect to depth provides an expression for the channel bank-
full cross-sectional area, i.e.,

A, = ky "/ (m+1) (6.5)

Using Eq. (6.4) and Eq. (6.5), the term AR*® (R = A/B) in the Manning Eq. (3.16) can be
expressed in the following form:

AR = B, [y,/(m+D)]? (6.6)

Thus the Manning Eq. (3.16) takes the following form for bank-full flow when using the
local channel bottom slope (S,) forthe energy slope (S,):

Q, = 1.486 S.'*/n B, [y,/(m+1)]*’ (6.7)

When the parameters to compute Q, in Eq. (6.7) are not available from site observations, it
has been found that an alternative to computing Q, is to use, if available, a two-year return
period flow (the flow expected to be equalled or exceeded once in two years).

Snyder used for the standard duration of rain (t), a value of t,/5.5. For any other rain
duration (ty), the adjusted basin lag (tpy) is given by the following:

tr = t, + (tg - ./5.5)/4 (6.8)
which reduces to the following:
te = 0.955t, + 0.25 t, (6.9)

Substitution of Eq. (6.2) into Eq. (6.9) yields the following expression for the adjusted basin
lag (tpp):

tg = 0.955 C, (LL//S)*® + 0.25 t, (6.10)
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Upon performing the following steps:

(1) substitute Eq. (6.10) into Eq. (6.1) for t, and then substitute the resulting
expression for q, into Eq. (6.3) for gy,

(2) substitute Eq. (6.7) into Eq. (6.3) for Q,, and
3 rearrange the expanded Eq. (6.3) to solve for R;

the following expression for threshold runotf is obtained:

1

0.38
LL,
. o.zstrJ 6.11)

p o 0-00232 B,S.” ‘ Y,

5/3
0.955C,
n A, C

m+1

where R is the threshold runoff in inches which will cause bank-full flow at the point of
interest; B, is the bank-full width in feet; S, is the local stream bottom slope in feet per feet;
y, is the bank-full depth in feet; C, is a coefficient described in Eq. (6.2); L is the length of
stream in miles from point of interest to upstream end; L. is the length of the stream in miles
from the point of interest to the centroid of the area; S is the weighted channel slope
throughout the drainage area in feet per mile; t is the duration of rainfall in hours; A, is the
drainage area in square miles upstream of the point of interest; C, is a coefficient described
in Eq. (6.1); m is the channel shape parameter defined in Eq. (6.4); and n is the Manning
roughness coefficient which can be estimated for in-bank flows by an expression developed
by Barrett (1984), 1.e.,

n = ¢ SI*/(A,/B)* (6.12)

in which ¢ = 0.39 (US) or 0.32 (SI), A, is the bank-full cross-sectional area. and n must be
> 0.03.

The watershed geometric parameters (L, L., S, and A) can be obtained automatically
via Geographical Information Software (GIS) packages, digital terrain elevation databases,
and specific software algorithms. Such a combined software package called Gridded
Threshold Runoff (GTR) has been developed for NWS by the University of Iowa using the
GIS software package, GRASS.

The channel parameters (B,, y,, and m) can be obtained by representative site
inspections. These parameters are then regressed against upstream watershed area (A,,) and
weighted slope (S) to obtain the channel parameters at all desired points of interest. The
local channel slope (S.) is also obtained from the GTR software package. The Manning n is
estimated from Eq. (6.12).
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Of the remaining parameters (C,, Cy, and t) in Eq. (6.11), t, is selected as either | hr.
3 hr, or 6 hr, and C, and C, are calibrated from similar gaged watersheds for which unit
hydrographs are available.

6.2 Gridded Threshold Runoff Values

The GTR determines the geographic locations of the network of streams that drain all
sub-basins having a specified minimum-sized watershed. The GTR then computes the
threshold runoff (R) values for sub-basins as indicated by the dashed lines in Fig. 3. Starting
upstream, GTR locates all stream junctions using a sub-basin area of at least 6.25 mi®. Next
the total area is computed upstream of each subjunction. This process establishes a stream
network grid which is nonuniform. An interpolation algorithm is used to provide the
threshold runoff values for a uniform grid network as shown in Fig. 3. The uniform grid
network -- a multiple of the 4 km x 4 km grid of the WSR-88D precipitation estimates -- is
superimposed over the stream network grid.
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Fig. 3. 4 km x 4 km grid superimposed on threshold runoff (sub-basins)
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6.3 Gridded Flash Flood Guidance

Almost all RFCs use the National Weather Service River Forecast System (NWSRFS)
described by Anderson (1986) to simulate soil moisture conditions. This Operational
Forecast System (OFS) uses observed precipitation (including the future WSR-88D
precipitation estimates) and temperature to determine the mean areal precipitation and
snowmelt over the forecast basins via the NWS Snow Accumulation and Ablation
Temperature Index Model (SNOW-17) along with one of several rainfall-runoff models, e.g.,
Antecedent Precipitation Index (API) models, Sacramento Soil Moisture Accounting
(SACSMA) model, and Xinanjiang model, which convert the precipitation and snowmelt to
runoff.

Using forecast temperatures and any precipitation since the last state variable update
along with the current forecast basin state variables, the snow model and the appropriate
rainfall-runoff model will be used with several different precipitation values to compute the
corresponding values of runoff. These define the rainfall-runoff curve for the basin. A
rainfall-runoff curve must be determined for each rainfall duration (t,) for - hich flash flood
guidance is desired.

The gridded flash flood guidance is the rainfall needed to produce the gridded threshold
runoff. This rainfall is interpolated from the appropriate rainfall-runoff curve at the
threshold runoff value. The gridded flash flood guidance values then will be transmitted
from an RFC database to a WFO where they will be automatically compared against the
most recent gridded WSR-88D precipitation estimates as well as gridded quantitative
precipitation forecasts (QPF). Based on this comparison, the WFO forecaster will decide if
it is necessary to issue either a flash flood watch or warning.
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